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We study interpolation polynomials based on the points in [&1, 1]_[&1, 1]
that are common zeros of quasi-orthogonal Chebyshev polynomials and nodes of
near minimal degree cubature formula. With the help of the cubature formula we
establish the mean convergence of the interpolation polynomials. � 1996 Academic

Press, Inc.

1. INTRODUCTION

It is well known that the zeros of Chebyshev polynomials in one variable
are in many ways optimal nodes for the purpose of polynomial interpola-
tion; see, for example, [10]. For n�1, the Chebyshev polynomial of degree
n is defined by

T*n (x)=cos n%, x=cos %;

its zeros are given explicitly as

xk=cos
(2k&1) ?

2n
, k=1, ..., n.

It is well known that T*n are orthogonal with respect to the Chebyshev
weight function w(x)=(1&x2)&1�2 on [&1, 1]. The zeros of T*n are also
the nodes of Gaussian quadrature formula with respect to w and they yield
compact interpolation formulae.

There are many difficulties with polynomial interpolation in several
variables. First of all, to ensure that interpolation problems are well-posed,
one needs to find, for each given set of points, a proper subspace of poly-
nomials in which the interpolation polynomial can be uniquely chosen.
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Another difficulty is how to choose sequences of points so that the inter-
polation process converges to the function being interpolated under mild
conditions imposed on the function. Other difficulties include the lack of
compact formulae for the interpolation polynomials and the lack of
analytic means to describe the interpolation points in general. In this
respect, one may ask the question what are good interpolation points, by
which we mean the set of points that resolve these difficulties. In one
variable, the zeros of Chebyshev polynomials, or zeros of other orthogonal
polynomials, are good interpolation points; they yield compact formulae
and elegant convergence results. In several variables, however, the question
is largely unanswered; beyond the points of tensor product type, which is
in essence one variable, there are few examples of interpolation points
which are explicitly known and yield good results.

In this paper we will work with several sequences of points in two
variables which are analog of Chebyshev points in several respects. These
points come from nodes of minimal or near minimal numerical cubature
formula. A minimal cubature formula is precise for polynomials of certain
degree with minimal number of nodes; it is the analog of Gaussian quad-
rature of one variable. Minimal or near minimal cubature formulae are, in
general, difficult to find; their nodes are common zeros of quasi-orthogonal
polynomials in several variables. For the product Chebyshev weight on
square region, however, several examples are known. It is shown only
recently in [14] that if such a cubature formula exists, then a Lagrange
interpolation polynomial can be uniquely defined; no example has been
examined yet. The purpose of this paper is to study two examples with
respect to the product Chebyshev weight. We describe the construction of
Lagrange interpolation polynomials in detail in Section 2 and prove the
mean convergence of the Lagrange interpolation in Section 3.

2. CONSTRUCTION OF INTERPOLATION POLYNOMIALS

Although most results on cubature formula and common zeros of poly-
nomials are developed in a general framework for all weight functions, we
shall restrict our exposition in this section to the case of product
Chebyshev weight functions of two variables. For an account of the results
in general we refer to [3, 5, 7, 14] and the references given there.

2.1. Product Chebyshev Polynomials

We denote the classical Chebyshev weight of the first kind by w0 , which
is defined by

w0(x)=
1
?

1

- 1&x2
, &1<x<1,
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and zero outside [&1, 1]. The orthonormal polynomials with respect to w0

are

T0(x)=1, Tk(x)=- 2 cos k%, k�1, x=cos %.

We warn the reader that our definition of Chebyshev polynomials differ
from the usual one by a factor of - 2, since our Tn are orthonormal with
respect to w0 . Moreover, in the definition of w0 we already incorporate the
factor ?&1, so that the integral of w0 on [&1, 1] is 1.

The product Chebyshev weight function on [&1, 1]2 is defined by

W0(x, y)=w0(x) w0( y)=
1
?2

1

- 1&x2
- 1&y2

, (x, y) # [&1, 1]2.

It is easy to verify that the polynomials defined by

Pn
k(x, y)=Tn&k(x) Tk( y), 0�k�n, n # N0 ,

where each Pn
k is of degree exactly n, are orthonormal with respect to W0 .

One convenient notation in dealing with orthogonal polynomials is the
vector

Pn=(Pn
0 , ..., Pn

n)T, n # N0 ,

whose components are orthonormal polynomials of degree exactly n. Intro-
ducing the matrices

An, 1=
1
2 _

1

m

. . .
1

m

- 2

0
b

0
0& and An, 2=

1
2 _

0
0
b

0

- 2

m

1
. . .

m

1 & ,

it can be readily verified that the product Chebyshev polynomials satisfy
the three-term relation

xi Pn(x)=An, iPn+1(x)+AT
n&1, i Pn&1(x), i=1, 2, x=(x1 , x2),

where we write x=(x1 , x2) for convenience; in all other places in the paper
we write x=(x, y). Every system of orthogonal polynomials in several
variables satisfies a three-term relation in such a vector�matrix form; the
relation plays an essential role in the study of orthogonal polynomials in
several variables and cubature formulae; see [12, 14] and the references
given there.
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For x # R2 and y # R2, the reproducing kernel of the product Chebyshev
polynomials is defined by

Kn (x, y)= :
n&1

k=0

:
k

j=0

Pk
j (x) Pk

j (y)= :
n&1

k=0

PT
k(x) Pk (y).

It is shown in [15] that there is a compact formula for Kn ( } , } ). Let

x=(cos %1 , cos %2), y=(cos ,1 , cos ,2).

Then the compact formula is given by

Kn(x, y)=Dn(%1+,1 , %2+,2)+Dn(%1+,1 , %2&,2)

+Dn(%1&,1 , %2+,2)+Dn(%1&,1 , %2&,2), (2.1)

where the function Dn is defined by

Dn(%1 , %2)=
1
2

cos(n&1�2) %1 cos(%1 �2)&cos(n&1�2) %2 cos(%2 �2)
cos %1&cos %2

. (2.2)

These formulae will lead to a compact formula for the Lagrange inter-
polation polynomials considered below.

2.2. Cubature Formula

By a cubature formula of degree 2n&1 with respect to W0 we mean a
linear functional f [ In( f ),

In f= :
N

k=0

f (xk) *k , *k>0, xk # R2,

where N is an integer depending on n, such that

|
[&1, 1]2

P(x, y) W0(x, y) dx dy=In(P), \P # 62
2n&1,

where 62
m denote the space of polynomials of (total) degree m in two

variables. The points xk , 1�k�N, are called nodes and *1 , ..., *N weights.
Such a formula is called minimal, if N, the number of nodes, is minimal
among all cubature formulae of degree 2n&1 with respect to W0 . Accord-
ing to a general result of Mo� ller [5] on centrally symmetric weight
functions, of which W0 is an example, the number of nodes in the cubature
formula satisfies

N�dim 62
n&1+_n

2&=\n+1
2 ++_n

2& . (2.3)
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Clearly, cubature formulae that attain this lower bound are minimal ones.
For general weight functions the lower bound (2.3) may not hold. In [5]
Mo� ller characterized cubature formulae that attain the lower bound (2.3).
Using this characterization, Morrow and Patterson [6] gave the first
minimal formulae for W0 . The minimal cubature formulae are not unique;
there are other examples known (cf. [2]).

We are interested in those minimal or near minimal formulae for W0

that can be given explicitly. We give two of them below and indicate how
they are constructed later. We denote by zk the points

zk=zk, n=cos
k?
n

, 0�k�n.

The first formula is a minimal formula given in [6]:
For n=2m,

1
?2 |

1

&1
|

1

&1
f (x, y)

dx dy

- 1&x2
- 1&y2

=
2
n2 :"

n�2

i=0

:
n�2&1

j=0

f (z2i , z2j+1)

+
2
n2 :

n�2&1

i=0

:"
n�2

j=0

f (z2i+1 , z2j), f # 62
2n&1, (2.4)

where �" means that the first and last terms in the summation are halved.
It is readily verified that this formula uses n2�2+n nodes, which is the

lower bound of (2.3). The second formula is shown to exist in [14]; here
it is given explicitly for the first time:

For n=2m&1,

1
?2 |

1

&1
|

1

&1
f (x, y)

dx dy

- 1&x2
- 1&y2

=
2
n2 :$

(n&1)�2

i=0

:$
(n&1)�2

j=0

f (z2i , z2j)

+
2
n2 :$

(n&1)�2

i=0

:$
(n&1)�2

j=0

f (zn&2i , zn&2j), f # 62
2n&1 , (2.5)

where �$ means that the first term in the summation is halved.
It is easy to verify that the formula uses (n+1)2�2 nodes which is one

more than the lower bound (2.3).
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Several minimal cubature formulae are known to exist, but their nodes
cannot be given by explicit formula as above. There are other formulae of
the similar type which can be written down explicitly, such as the one for
n=2m in [6, p. 964]. We choose these two to illustrate our method; the
others can be dealt with similarly.

The existence of a cubature formula of degree 2n&1 depends on the
solution of nonlinear matrix equations. For W0 these equations are
first considered by Mo� ller [5]; here we follow the formulation of [14].
A cubature formula exists when the following equations in variable V are
solvable,

An&1, 1(VV T&I ) AT
n&1, 2=An&1, 2(VV T&I ) AT

n&1, 1 (2.6a)

and

V TAT
n&1, 1An&1, 2V=V TAT

n&1, 2An&1, 1V, (2.6b)

where V is a matrix of size (n+1)__ and it is necessary that

_=_n
2& or _=_n

2&+1.

When these two equations are solvable for V, a cubature formula of degree
2n&1 exists whose nodes are the common zeros of the polynomials U TPn ,
where U T is the orthogonal complement of V; i.e., U satisfies

U TV=0, U : (n+1)_(n+1&_).

The solution with _=[n�2] corresponds to the minimal cubature formula
with the number of nodes equal to the lower bound (2.3); the solution with
_=[n�2]+1 corresponds to a near minimal cubature formula with one
more node than the lower bound (2.3).

In particular, for n=2m, one solution of (2.6) can be easily verified
to be

V T=_
- 2

m

1
. . .

m

1

0
0
b

0

m

&1
. .

.
&1

&- 2

m & , (2.7)
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which corresponds to the cubature formula (2.4); the nodes are the com-
mon zeros of the polynomials

U TPn , where U T=_
1

m
0

. . .
m

1
0

0
b

0
- 2

m

&1
0

. .
.

&1

m
0 & , (2.8)

or, more transparently,

Tn&k+1(x) Tk&1( y)&Tk&1(x) Tn&k+1( y), 1�k�n�2+1.

For n=2m&1, one solution of (2.6) can be verified to be

V T=_
- 2

m

1
. . .

m

1

m

&1
. .

.
1

&- 2

m & , (2.9)

which corresponds to the cubature formula (2.5); the nodes are the com-
mon zeros of polynomials

1 m m &1

U TPn , U T=_ . . . . .
. & , (2.10)

m 1 &1 m

or, more transparently,

Tn&k+1(x) Tk&1( y)&Tk&1(x) Tn&k+1( y), 1�k�(n+1)�2,

and an additional polynomial of degree n+1 which we will not give
explicitly (see [14]).

We need to know the polynomials U TPn in order to compute the nodes
of the cubature formula; the polynomial subspace in which the interpola-
tion polynomials are uniquely defined will be given with the help of V. The
method we described above can be used to construct cubature formulae for
W0 . We have indicated the construction of (2.4) and (2.5); in fact, the
cubature formula (2.5) is found exactly this way. We first find a solution V
of (2.6a) and (2.6b), then determine the nodes by solving the common
zeros of U TPn . Once the nodes are determined, the weights of the cubature
formula are uniquely determined by a formula given below; see (2.13).
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2.3. Lagrange Interpolation Polynomials

The connection between the cubature formula and polynomial interpola-
tion has been established recently in [14]. If a cubature formula exists, we
can consider the Lagrange interpolation problem based on the nodes of the
cubature formula, which asks for a unique polynomial solution of

P(xk)=f (xk), 1�k�N,

for any function f in a subspace of 62
n . Since N<dim 62

n , we have to
specify the subspace so that the interpolation is unique. Clearly, no polyno-
mial that vanishes on all [xk] can belong to the subspace. In [14], it is
proved that the proper subspace is given by

V2
n=62

n&1 _ span[V+Pn], (2.11)

where V+ is the unique Moore�Penrose generalized inverse of V; since V
has full rank, we have

V+=(V TV)&1 V T.

Moreover, the Lagrange interpolation polynomial, denoted by Ln f, can be
given explicitly. For x, y # R2, recall that Kn( } , } ) denotes the reproducing
kernel; we set

K*n (x, y)=Kn(x, y)+[V+Pn(x)]T V+Pn( y).

Using a modified Christoffel�Dabroux formula, we showed in [14] that
K*n (xk , xj)=0 for k{j, while it follows from the definition that
K*n(xk , xk){0. Therefore, it follows that

(Ln f )(x)= :
N

k=1

f (xk)
K*n (x, xk)

K*n (xk , xk)
. (2.12)

Actually, the existence of the cubature formula is established in [14] with
the help of (2.12); it is shown there that the cubature formula is given by
the integration of Ln f, just as in the case of one variable:

|
[&1, 1]2

(Ln f )(x) W0(x) dx= :
N

k=1

f (xk) *k=In f.

In particular, from the orthogonality of Pk
j and the definition of K*n ( } , } )

it follows immediately that the weights in the cubature formula are given
by

*k=[K*n (xk , xk)]&1. (2.13)
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By the definition of K*n ( } , } ), (2.1), and (2.2), the weights in the cubature
formula (2.4) and (2.5) can be computed using (2.13).

In the following we give explicit formulae for the Lagrange interpolation
polynomials based on the nodes of (2.4) and (2.5) and indicate how the
formulae are derived.

The case n=2m. The interpolation points are

x2i, 2j+1=(z2i , z2j+1), 0�i�m, 0�j�m&1,
(2.14)

x2i+1, 2j=(z2i+1, z2j), 0�i�m&1, 0�j�m.

The Lagrange interpolation polynomials are given by (2.12) with

K*n (x, xk, l)= 1
2 [Kn(x, xk, l)+Kn&1(x, xk, l)]& 1

2(&1)k } [Tn(x)&Tn( y)],

(2.15)

and

K*n (x0, 2j+1 , x0, 2j+1)=n2, K*n (x2i, 2j+1 , x2i, 2j+1)=n2�2, i>0,
(2.16)

K*n (x2i+1, 0 , x2i+1, 0)=n2, K*n (x2i+1, 2j , x2i+1, 2j)=n2�2, j>0.

If we recall the formula (2.1) for Kn( } , } ), we see that (2.15) and (2.16)
give a compact formula for Lagrange interpolation polynomials; moreover,
by (2.13), (2.16) gives the weights in the cubature formula. To verify these
formulae, we use the notation xk, l for one of the points whenever we do
not need the explicit formula in (2.14). From (2.7) and (2.8), it is easy to
verify

V TV=2 _
2

m

1
. . .

m

1 & ,

V+=_
- 2�2

1
. . .

1

0
0
b

0 &1
. .

.
&1

&- 2�2

& ,

1 &1

(V+)T V++
1
4

UU T=
1
2

I&
1
8 _ m & ,

&1 1
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where I stands for the identity matrix and the last matrix in the formula
contains only four nonzero entries located at the corners. Since
U TPn(xk)=0, it readily follows that

PT
n (x)(V+)T V+Pn(xk, l)

= 1
2PT

n (x) P(xk, l)& 1
8 [Pn

0(x)&Pn
n(x)] } [Pn

0(xk, l)&Pn
n(xk, l)]. (2.17)

From the fact that Pn
0(x)=- 2 Tn(x) and Pn

n(x)=- 2 Tn( y), it follows that
Pn

0(xk, l)&Pn
n(xk, l) takes the value (&1)k 2 - 2. Since

PT
n (x) Pn(y)=Kn(x, y)&Kn&1(x, y),

(2.15) follows from the definition of K*n ( } , } ). In particular, set x=y=xk, l

in (2.15) and use (2.14); we conclude that

K*n (xk, l , xk, l)= 1
2 [Kn(xk, l , xk, l)+Kn&1(xk, l , xk, l)]&1. (2.18)

Using the formula (2.18) and combining with (2.2), we can compute the
cubature weights. After tedious computation, (2.16) can be verified.

The case n=2m&1. The interpolation points are

x2i, 2j=(z2i , z2j), x2i+1, 2j+1=(z2i+1 , z2j+1), 0�i, j�m&1. (2.19)

The Lagrange interpolation polynomials are given by (2.12) with

K*n (x, xk, l)= 1
2 [Kn(x, xk, l)+Kn&1(x, xk, l)]& 1

2 (&1)k } [Tn(x)+Tn( y)].

(2.20)

and

n2�2, if 0<i, j�m&1

K*n (x2i, 2j , x2i, 2j)={n2, if i=0 or; j=0, i+j>0

2n2, if i=j=0,

K*n (x2i+1, 2j+1 , x2i+1, 2j+1)

n2�2, if 0�i, j<m&1

={n2, if i=m&1 or; j=m&1, i+j<2m&2 (2.21)

2n2, if i=j=m&1.
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Again, (2.20) combined with (2.1) gives the compact formulae for the
Lagrange interpolation polynomials and (2.21), by (2.13), yields the
weights in the cubature formula (2.5). To verify these formulae, we again
use the notation xk, l . In this case, we have

V TV=2 _
2

m

1
. . .

m

1 & ,

V+=_
- 2�2

1
. . .

1

0
0
b

0 &1
. .

.
&1

&- 2�2

& ,

and

1 1

(V+)T V++
1
4

UU T=
1
2

I&
1
8 _ m & ,

1 1

from which and the fact that U TPn(xk)=0, it readily follows that

PT
n (x)(V+)T V+Pn(xk, l)

= 1
2PT

n (x) P(xk, l)& 1
8 [Pn

0(x)+Pn
n(x)] } [Pn

0(xk, l)+Pn
n(xk, l)].

Therefore, taking into consideration the formulae for Pn
0 and Pn

n as in the
case of n=2m, we conclude that (2.20) holds. In particular, it can be
verified that K*n (xk, l , xk, l) is given by exactly the same formula (2.18), from
which we can verify (2.21).

In fact, the existence of the cubature formula (2.5) is shown in [14],
where the matrices U, V are given but not the nodes and the weights of the
formula. The formula (2.5) is given explicitly for the first time here. As
mentioned before, the way to determine the nodes and the weights of the
cubature formula is to compute the common zeros of (2.10) and then
weights by (2.18) and (2.2). The author indeed derived the formulae (2.20)
and (2.21) this way. The computation is tedious but elementary and the
formulae may be verified by other means once they are found; we decide
not to include the details.
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3. MEAN CONVERGENCE OF LAGRANGE INTERPOLATION

With respect to W0 we define the weighted Lp space Lp
W0

as the space of
Lebesgue measurable functions f on [&1, 1]2 for which the norm

& f &W0 , p={|[&1, 1]2
| f (x, y)|p W0 (x, y) dx dy=

1�p

is finite. For 0<p<1, & } &Wp, p is not a norm; nevertheless, we keep this
notation for convenience. We also denote the space of continuous functions
on [&1, 1]2 by C[&1, 1]2. Our main result is as follows.

Theorem 3.1. Let Ln f be defined as in the previous section based on
nodes (2.14) or (2.19). Let 0<p<�. Then

lim
n � �

& f&Ln f &W0, p=0 \f # C[&1, 1]2.

It is worthwhile to point out that the convergence for p=1 also leads to
the convergence of cubature formula, namely, we have

Corollary 3.2. Let In f denote the cubature formulae in (2.4) or (2.5).
Then

lim
n � �

In f=|
[&1, 1]2

f (x) W0(x) dx \f # C[&1, 1]2.

Theorem 3.1 will be a consequence of the following theorem, which is of
interest in itself.

Theorem 3.3. Let 1<p<�. Let xk , 1�k�N, be the points given in
(2.14) or (2.19). Then

|
[&1, 1]2

|P(x)|p W0(x) dx�Ap
p

1
N

:
N

k=1

|P(xk)| p \P # V2
n , (3.1)

where Ap is a constant depending only on p.

In one variable, an inequality of the type in Theorem 3.3 is called the
Marcinkiewicz�Zygmund inequality; see [16, Vol. 2, p. 28] for the first
such inequality established for trigonometric polynomials. Our proof will
follow the approach of [13], where such inequalities are proved for the
generalized Jacobi weight functions of one variable and they are used to
prove the mean convergence of the interpolation polynomials based on the
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zeros of generalized Jacobi polynomials. For p=2, such a consideration
has been carried out in [11] for polynomial interpolation based on the
zeros of cubature formula of even degree. As we shall see, the additional
term [V+Pn(x)]T V+Pn(xk, l) of K*n ( } , } ) which appears in the formula of
Lagrange interpolation polynomials demands special consideration even
when p=2. The proof of Theorem 3.3 uses the Lp boundness of the partial
sums of the orthogonal expansion with respect to the product Chebyshev
polynomials. For a Lebesgue integrable function f, the nth partial sum of
f with respect to Pk

j is defined by

Sn( f; x)= :
n&1

k=0

:
k

j=0

ak
j ( f ) Pk

j (x), ak
j ( f )=|

[&1, 1]2
f (x) Pk

j (x) W0(x) dx.

In terms of the reproducing kernel Kn we can write Sn f as

Sn( f; x)=|
[&1, 1]2

Kn(x, y) f (y) W0(y) dy.

We will need the following result, which states that Sn is a bounded
operator from Lp

W0
to Lp

W0
.

Lemma 3.4. Let 1<p<�. Then there is a constant Bp which depends on
p only such that

&Sn f &[W0, p]�Bp & f &[W0, p] \f # Lp
W0

.

Proof. To prove this theorem, we relate it to its trigonometric counter-
part. Let x=(cos %1 , cos %2) and y=(cos ,1 , cos ,2). Changing variables
and using the formula (2.1) of Kn( } , } ), we have that

Sn( f; x)= :
(=1 , =2) # [&1, 1]2

1
?2 |

?

0
|

?

0
Dn(%1+=1,1 , %2+=2,2)

_f (cos ,1 , cos ,2) d,1 d,2 ,

where Dn is defined in (2.2). Note that Dn is even and 2?-periodic in both
of its variables. Set

f� (%, ,)=f (cos %, cos ,),

which is 2?-periodic in both of its variables and define

sn f� (%, ,)=
1
?2 |

?

&?
|

?

&?
Dn(%+!, ,+') f� (!, ') d! d'.
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Then it is easy to see that to prove the boundedness of Sn from Lp
W0

to
Lp

W0
, it suffices to prove the boundedness of sn from Lp to Lp, where

Lp=Lp(T2) is the usual Lp space. More precisely, it suffices to prove that
for any f # Lp, 1<p<�,

\ 1
?2 |

?

&?
|

?

&?
|sn f (%, ,)|p d% d,+

1�p

�B$p \ 1
?2 |

?

&?
|

?

&?
| f (%, ,)|p d% d,+

1�p

, (3.2)

where B$p depends on p only. For a function h # L1(T2) its Fourier series is
defined by

h(%, ,)t:
k, j

h� (k, j) ei(j%+j,), h� (k, j)=
1
?2 |

[&?, ?]2
f (%, ,) e&i(k%+j,) d% d,.

It is easy to see, as pointed out in [1, 15], that Dn is the Dirichlet kernel
for the l-1 summation of the Fourier series and that snh is the l-1 partial
sum of h; i.e.,

Dn+1(%, ,)= :
|k|+| j|�n

ei(k%+j,), Tnh=h V Dn ,

where V stands for the usual convolution. Because of these formulae, the
inequality (3.2), actually its d variable analog, follows from results in
Fourier analysis. First, by the Poisson summation formula, instead of
working with Fourier series, one can deal with the Fourier integral on Rd;
to prove the inequality, it amounts to proving that the characteristic func-
tion, /B1

, of the l1 unit ball B1=[x : |x1|+ } } } +|xd|�1] in Rd is a
Fourier multiplier for Lp(Rd) (cf. [9, p. 260]). Second, in [8, Theorem 4 of
Chap. IV] it is proved, using the Lp boundedness of the Hilbert transform,
that the characteristic function of a rectangular region is an Lp multiplier;
as pointed out in Remark 6.2.6 of [8, Chap. IV], the proof for the rec-
tangular case can be modified to show that the characteristic function of an
arbitrary polyhedron is a multiplier for Lp(Rd) for 1<p<�, which
includes, in particular, the l1-balls. K

For Fourier series in one variable, the inequality (3.2) is the celebrated
result of Riesz on the Lp boundedness of Fourier partial sums. This
indicates that the proof in [8], which we outlined above, is perhaps as sim-
ple as it can be. However, it would be interesting to find a proof of (3.2)
which deals with the partial sums of Fourier series directly, without trans-
forming the problem to Rd; such a proof may show us a way to deal with
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orthogonal series with respect to other weight functions, such as the
product Jacobi weight functions. In this respect, we should mention that
the Dirichlet kernel of Dn in d variables turns out to be a divided difference
with the variables acting as nodes of the divided difference; see [1, 15].

Back to the proof of Theorem 3.3, we need one more result which is the
counterpart of Theorem 3.3.

Lemma 3.5. Let 1�p��. Let xk , 1�k�N, be the points given in
(2.14) or (2.19). Then there is a constant Cp , depending on p only, such that

1
N

:
N

k=1

|P(xk)|p�Cp |
[&1, 1]2

|P(x)|p W0(x) dx \P # 62
n . (3.3)

Proof. The proof depends on an univariant inequality in [4], which
holds for generalized Jacobi weight functions. We state it only for the
Chebyshev weight function w0 . Let &1�ys<ys&1< } } } <y1�1 be given.
Write yj=cos %j and let

$=min[%2&%1 , %3&%2 , ..., %s&%s&1]>0.

Then for 1�p<� and for all polynomials Q of degree at most rn, there
is a constant cp depends on p only such that

:
s

j=1

|Q( yj)|p�cp(n+$&1) |
1

&1
|Q(u)|p w0(u) du. (3.4)

We prove the inequality (3.3) for the case n=2m. Recall that zk=cos k?�n,
we use the inequality (3.4) to conclude that

:
k, j

|P(xk, j)|p= :
m

i=0

:
m&1

j=0

|P(z2i , z2j+1)|p+ :
m&1

i=0

:
m

j=0

|P(z2i+1 , z2j)| p

�2cpm :
m

i=0
|

1

&1
|P(z2i , y)| p w0 ( y) dy

+2cpm :
m&1

i=0
|

1

&1
|P(z2i+1 , y)|p w0( y) dy,

where for each sum on j we fix i and apply (3.4) on the polynomial
Q=P(zi , } ). We then exchange the summation and the integral in the last
equation and apply (3.4) on the sum of the polynomial Q=P( } , y) for
fixed y to conclude that

:
k, j

|P(xk, j)|p�8c2
p m2 |

1

&1
|

1

&1
|P(x, y)|p w0(x) w0( y) dx dy,
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which proves the desired inequality with Cp=4cp for n=2m. The case
n=2m&1 can be proved simlarly. K

We are ready to prove the Marcinkiewicz�Zygmund inequality in
Theorem 3.3.

Proof of Theorem 3.3. For p>1, we have

&P&W0 , p= sup
&g&W0 , q

|
[&1, 1]2

P(x) g(x) W0(x) dx,
1
p

+
1
q

=1.

Since P # 62
n , by the orthogonality we have

|
[&1, 1]2

P(x) g(x) W0(x) dx=|
[&1, 1]2

P(x) Sn( g; x) W0(x) dx. (3.5)

We denote by an( g) the vector of the Fourier coefficients of g with respect
to Pn ; i.e.,

an( g)=|
[&1, 1]2

g(x) Pn(x) W0(x) dx.

Using this notation, we write Sn( g) as a sum,

Sn( g; x)=Sn&1( g; x)+aT
n ( g) Pn(x), (3.6)

and break the estimate of (3.5) into two parts. First, since PSn&1( g) is of
degree 2n&1, it follows from the cubature formula and the Ho� lder
inequality that

} |[&1, 1]2
P(x) Sn&1( g; x) W0(x) dx }

= } :
N

k=1

P(xk) Sn&1( g; xk) *k }
�\ :

N

k=1

|P(xk)|p *k+
1�p

\ :
N

k=1

|Sn&1( g; xk)| q *k+
1�q

.

Applying Lemma 3.4 and Lemma 3.5 on Sn&1g and taking into account
the fact that &g&[W0, q]=1, we conclude that

\ :
N

k=1

|Sn&1( g; xk)|q *k+
1�q

�(2Cq)1�q&Sn( g)&[W0, q]�(2Cq)1�q Bq , (3.7)
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where we have used (2.13) and (2.16) or (2.21) to replace *k by 2�N. There-
fore, we conclude that

} |[&1, 1]2
P(x) Sn&1( g; x) W0(x) dx }�(2Cq)1�q Bq \ :

N

k=1

|P(xk)|p *k+
1�p

.

To deal with the term corresponding to aT
n ( g) Pn , we first note that since

P # V2
n , we have LnP=P. Therefore, by the formulae (2.12), (2.13) and the

definition of K*n ( } , } ),

|
[&1, 1]2

P(x) aT
n ( g) Pn(x) W0(x) dx

=|
[&1, 1]2

(LnP)(x) aT
n ( g) Pn(x) W0(x) dx

= :
N

k=1

P(xk) *k |
[&1, 1]2

[PT
n (xk)(V+)T V+Pn(x)]

} [aT
n ( g) Pn(x)] W0(x) dx.

We now need the explicit formulae of PT
n (xk)(V+)T V+Pn(x) derived in the

previous section. Let us assume that n=2m; the case n=2m&1 works
similarly. By (2.15), we get

|
[&1, 1]2

P(x) aT
n ( g) Pn(x) W0(x) dx

= 1
2 :

N

k=1

P(xk) *kaT
n ( g) Pn(xk)

&1
8 [an

0( g)+an
n( g)] :

N

k=1

P(xk) *k[Pn
0(xk)+Pn

n(xk)].

For the first sum, we use aT
n ( g) Pn=Sn( g)&Sn&1( g) to write it as two

sums, both of which can be estimated by Ho� lder's inequality and the
estimate in (3.7). For the second sum, we recall that

Pn
0(x)=- 2 Tn(x), Pn

n(y)=- 2 Tn(y),

which implies that both polynomials are uniformly bounded by - 2. By
Ho� lder's inequality, we have for i=0, n,
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|an
i ( g)|= } |[&1, 1]2

Pn
i (x) g(x) W0(x) dx }

�\|(&1, 1]2
|Pn

i (x)|p W0(x) dx+
1�p

\|[&1, 1]2
| g(x)|q W0(x) dx+

1�q

�- 2 &g&[W0, q]=- 2

and

} :
N

k=1

f (xk) *k[Pn
0(xk)+Pn

n(xk)] }
�2 - 2 :

N

k=1

| f (xk)| *k

�2 - 2 \ :
N

k=1

| f (xk)| p *k+
1�p

\ :
N

k=1

*k+
1�q

=2 - 2 \ :
N

k=1

| f (xk)|p *k+
1�p

.

Putting these estimates together, we conclude that

} |[&1, 1]2
P(x) aT

n ( g) Pn(x) W0(x) dx }�\ :
N

k=1

| f (xk)|p *k+
1�p

;

the constant in front of the second integral is 1=(2 - 2)2�8. Therefore, by
(3.6), we complete the proof of the theorem. K

Proof of Theorem 3.1. Applying the inequality in Theorem 3.3 to the
polynomial Ln f # V2

n , we see that &Ln f &[W0, p] is finite for f # C[&1, 1]2

for p>1. Moreover,

&Ln f &[W0, p]�Ap \ 1
N

:
N

k=1

|P(xk)| p+
1�p

�Ap& f &� ,

where & } &� is the uniform norm of f on [&1, 1]2. Since Ln f preserves
polynomials in V2

n , in particular, polynomials in 62
n&1 , it follows that for

all P # V2
n ,

&Ln f&f &[W0, p]�&Ln( f&P)&[W0, p]+& f&P&[W0, p]�(1+Ap)& f&P&� ,

for 1<p<�. Since the subspaces of polynomials 62
n&1 are dense in

C[&1, 1]2, the desired convergence is proved for 1<p<�. For 0<p�1,
it follows from the Ho� lder inequality that

|
[&1, 1]2

|Ln f |p W0 dx�\|[&1, 1]2
|Ln f | 2 W0 dx+

p�2

\|[&1, 1]2
W0 dx+

1&p�2

,
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from which it follows from the boundedness of &Ln f &[W0, p] that &Ln f &[W0, p]

is again bounded for f # C[&1, 1]2. The convergence follows similarly as in
the case p>1. K
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